TRIAL TEST 4: **ORGANIC CHEMISTRY**

Time allowed: 70 minutes

Section 1 - Multiple Choice

20 marks

Total marks:

80

Section 2 - Short & Extended Answer

60 marks

ethyl ethanoate

SECTION 1 - MULTIPLE CHOICE (20 MARKS)

Consider the compound whose structural formula is drawn below: 1.

$$CH_3CHCH = CHC \\ CH_3$$

The IUPAC name for this molecule would need to indicate that the functional groups it contained included:

- a double bond and an aldehyde group. (a)
- (b) an alkyl group and an alcohol group.
- an alkyl group and a carboxyl group. (c)
- a double bond and a carboxyl group. (d)

From the list of 5 names below, pick the combination that are isomers of each other. 2.

butan-2-ol III butanoic acid II IV butanal butanone

- I and II (a)
- II and III (b)
- III and IV (c)
- IV and V (d)

Three important types of chemical reaction are: 3.

> I Condensation polymerisation

Addition polymerisation II

Esterification III

The equation for the production of terylene is:

This reaction could be classified as a type:

- I reaction only. (a)
- II reaction only. (b)
- I and III reaction. (c)
- (d) II and III reaction.

- 4. Which of the following lists contains empirical formulae only.
 - (a) C_2H_6
- CuSO,
- Mn,O,

- (b) HO
- C,H,O
- N,H,SO,

- (c) OF,
- CCl₄
- $C_{\epsilon}^{2}H_{\epsilon}^{\delta}$

- (d) $Pt_2N_2H_2Cl_2$
- AgN, H
- CaO,H,

Use the structural formulae drawn below to answer questions 5 to 7.

- 5. The substances which are polar but do not exhibit hydrogen bonding are:
 - (a) IV & VI
 - (b) I, IV, V & VI
 - (c) IV & V
 - (d) V & VI
- 6. The substance that would react with acidified KMnO₄ to form an isomer of VI is:
 - (a) I
 - (b) II
 - (c) III
 - (d) IV
- 7. The two substances that could be used to produce a third from the list are:
 - (a) III & VI
 - (b) II & IV
 - (c) III & IV
 - (d) V & VI
- 8. A compound containing only C, H and O was found to be composed of 77.38% oxygen and 19.36% carbon.
 - (a) The compound would be carboxylic acid as it contains carbon, oxygen and a very small amount of hydrogen.
 - (b) To determine the molecular formula of the compound, it would be necessary to vaporise a known mass of the compound to determine the percentage of hydrogen present.
 - (c) The compound would be a carboxylic acid or an ester, more information would be needed to determine which.
 - (d) The compound has an empirical formula O₃CH₂.
- 9. Consider the molecule shown.

This molecule would be best identified as:

- (a) a carboxylic acid
- (b) a primary amine
- (c) an α-amino acid
- (d) an amino aldehyde

- Which of the following compounds would you expect to be most soluble in water? 10.
 - propane
 - (b) propanal
 - (c) propanone
 - (d) propan-1-ol

SECTION 2 – SHORT AND EXTENDED ANSWER (60 MARKS)

Use IUPAC rules to name the following compounds. 11.

[12 marks]

- Draw the structural formula for each of the following compounds. 12.
 - 1,2-dichloroethane (a)
- (b) trans-but-2-ene
- (c) cis-2,3-diiodopent-2-ene
- (d) pentan-1-amine (or pentanamine)
- 3,4-dimethylheptanal (e)
- propyl butanoate (f)

13.	Write the balanced equation for each of the following reactions:
	(a) propene + chlorine gas
	(b) butane + excess oxygen gas
	(c) ethane + bromine (in presence of suitable catalyst)
	[6 mar]
14.	Use half equations to write balanced equations for the following reactions and name the organic product produced.
	(a) Acidified potassium dichromate and propanal
	OXIDATION:
	REDUCTION:
	REDOX:
	NAME:
	(b) Acidified potassium permanganate and butan-2-ol
	OXIDATION:
	REDUCTION:
	REDOX:
	NAME:
	[8 mar
15.	Draw the structural formula and name the organic product of the following reactions
	(a) ethanol + propanoic acid (b) heptan-1-ol + butanoic acid (with concentrated H_2SO_4 as catalyst) (with concentrated H_2SO_4 as catalyst)

- Draw a section of the polymer chain formed when the following monomers are polymerised. You need to draw at least 4 monomer units in your polymer.

[4 marks]

17. The general formula of an a-amino acid can be written as:

$$H_2N$$
 C C O

Write the formula to show the ions formed when:

- (a) It is dissolved in an acidic solution
- (b) It is dissolved in a basic solution

[4 marks]

18. A 0.467 g sample of nicotine was burnt in excess oxygen to produce 1.266 g of carbon dioxide and 0.3589 g of water vapour.

A second sample of the nicotine, weighing 0.362 g was analysed and found to contain 0.06263 g of nitrogen.

A third sample of the nicotine, weighing 0.964 g was vaporised in a 0.0500 L container and found to exert a pressure of 544 kPa at a temperature of 277°C.

Determine the empirical and molecular formulae of the nicotine.

a Ka	
4.	
Mr.	
	·····

[10 marks]

END OF TEST – TOTAL 80 MARKS

iron with zinc. The more reactive zinc will corrode in preference to the iron.

• Using cathodic prevention by applying a low voltage to, say, a steel jetty. The power source provides a source of electrons in preference to the iron.

13. *(a)*

[14]

[20]

TRIAL TEST 4:
Organic Chemistry

Section 1	18 h

Section 2

- (b) cis-2,2-dibromo-5-methylhept-3-ene
- (c) pentan-2-one
- (d) propanoic acid
- (e) 6,7,7-tribromo-3,4-dichloroheptan-1-amine
- (f) propylethanoate

12.

$$(b) \qquad \qquad \underset{\mathsf{H}-\mathsf{C}}{\overset{\mathsf{H}}{\underset{\mathsf{C}-\mathsf{H}}{\mathsf{H}}}} = \mathsf{C} \overset{\mathsf{H}}{\underset{\mathsf{H}}{\overset{\mathsf{I}}{\underset{\mathsf{C}-\mathsf{H}}{\mathsf{H}}}}}$$

14.

(a) Oxidation: $CH_3CH_2CHO + H_2O \rightarrow CH_3CH_2COOH + 2H^* + 2e$ Reduction: $Cr_2O_7^{2^*} + 14H^* + 6e \rightarrow 2Cr^{3^*} + 7H_2O$ Redox: $3CH_3CH_2HO + Cr_2O_7^{2^*}(aq) + 8H^*(aq) \rightarrow 3CH_3CH_2COOH(aq) + 2Cr^{3^*}(aq) + 4H_2O(l)$ Name: propanoic acid

(b) Oxidation: $CH_3CHOHCH_2CH_3 \rightarrow CH_3COCH_2CH_3 + 2H^+ + 2e$ Reduction: $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ Redox: $5CH_3CHOHCH_2CH_3 + 2MnO_4^-(aq) + 6H^+(aq) \rightarrow 5CH_3COCH_2CH_3 + 2Mn^{2+}(aq) + 8H_2O(l)$

Name: butanone

(b)
$$H_2N \longrightarrow \begin{matrix} H \\ - \\ R \end{matrix} \bigcirc O$$

$$\begin{array}{l} n(H) = 2n(H_2 \text{O}) = \frac{2 \times 0.3589}{18.016} = 0.03984 \\ mol \end{array}$$

$$m(H) = 0.03984 \times 1.008 = 0.04016 g$$

 2^{nd} sample is different size to first sample but must contain the same proportion of N. i.e. proportion N in first sample

$$= 0.467 \times \frac{0.06263}{0.362}$$
$$= 0.0808 g$$

$$n(N)$$
 in first sample = $\frac{0.0808}{14.01}$ = 5.767 $\times 10^{-3}$ mol

$$m(O)$$
 in nicotine = $0.467 - (0.3455 + 0.04016 + 0.0808) = 0.0 g$

Nicotine contains C, H + N only

 $EF of Nicotine = C_{\varsigma}H_{\tau}N$

Sample 3
$$m = 0.964 g$$

$$n = \frac{PV}{RT} = \frac{544 \times 0.0500}{8.315 \times 550} = 5.948 \times 10^{-3} \, mol$$

$$M = \frac{m}{n} = \frac{0.964}{5.948 \times 10^{-3}} = 162.08 \text{ g mol}^{-1}$$

 $mass\ of\ EF = 81.116$

mass of molecular formula = $2 \times mass$ of EF

∴ molecular formula = $2 \times EF$ = $C_{10}H_{14}N_2$